Home
Class 12
MATHS
If the vectors veca=hati+ahatj+a^(2)hatk...

If the vectors `veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, vecc=hati+chatj+c^(2)hatk` are three non-coplanar vectors and `+(a, a^(2), 1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0` , then the value of `abc` is

A

0

B

1

C

2

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, vecc=hati+chatj+c^(2)hatk are three non-coplanar vectors and | (a, a^(2), 1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 , then the value of abc is

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If the vectors veca=2hati-hatj+hatk, vecb=hati+2hatj-hat(3k) and vecc= 3hati+lamda hatj+5hatk are coplanar the value of lamda is (A) -1 (B) 3 (C) -4 (D) -1/4

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

Three vectors a=hati+hatj-hatk, b=-hati+2hatj+hatk and c=-hati+2hatj-hatk , then the unit vector perpendicular to both a+b and b+c is