Home
Class 12
MATHS
Given that veca,vecc,vecd are coplanar t...

Given that `veca,vecc,vecd` are coplanar the value of `(veca + vecd).{veca xx [vecb xx (vecc xx veca)]}` is:

A

`-2`

B

0

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors, vecb, vcec and vecd are not coplanar, the pove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

Statement 1: veca, vecb and vecc arwe three mutually perpendicular unit vectors and vecd is a vector such that veca, vecb, vecc and vecd are non- coplanar. If [vecd vecb vecc] = [vecdvecavecb] = [vecdvecc veca] = 1, " then " vecd= veca+vecb+vecc Statement 2: [vecd vecb vecc] = [vecd veca vecb] = [vecdveccveca] Rightarrow vecd is equally inclined to veca, vecb and vecc .

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to: