Home
Class 12
MATHS
For any four vectors veca, vecb, vecc, v...

For any four vectors `veca, vecb, vecc, vecd` the expressions `(vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd)`is always equal to:

A

`[veca vecb vecc]`

B

`[veca vecc vecd]`

C

`[vecb vecc vecd]`

D

None

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

For any three vectors veca, vecb and vecc write value of the following veca xx (vecb + vecc) + vecb xx (vecc + veca)+ vecc xx (veca + vecb)

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to

Then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecb))xx (vecb xx vecc)) (vecb -vecc) is always equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=