Home
Class 12
MATHS
Let veca and vecb be two non-collinear u...

Let `veca` and `vecb` be two non-collinear unit vectors. If `vecu=veca-(veca.vecb)vecb` and `vec=vecaxxvecb`, then `|vecv|` is

A

`|vecu|`

B

`|vecu|+|vecu.veca|`

C

`|vecu|+|vecu.vecb|`

D

`|vecu|=vecu.(veca + vecb)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two non collinear vectors and vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb then |vecv| is (A) |vecu| (B) |vecu|+|vecu.vecb| (C) |vecu|+|vecu.veca| (D) none of these

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=1/2vecb then find the angle between veca and vecb .

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=1/2vecb then find the angle between veca and vecb .

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

Let veca and vecb be two non-zero vectors perpendicular to each other and |veca|=|vecb| . If |veca xx vecb|=|veca| , then the angle between the vectors (veca +vecb+(veca xx vecb)) and veca is equal to :

If vecb and vecc are any two orthogonal unit vectors and veca is any vector, then (veca.vecb)vecb + (veca.vecc)vecc + (veca.(vecb xx vecc))/|vecb xx vecc|^(2) (vecb xx vecc) =