Home
Class 12
MATHS
If veca, vecb and vecc be three non-copl...

If `veca, vecb and vecc` be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that
`i. vecr=(vecr.veca')veca+(vecr.vecb')vecb+(vecr.vecc')vecc`
ii. `vecr= (vecr.veca)veca'+(vecr.vecb)vecb' + (vecr.vecc) vecc'`

A

`vecr = (vecr.veca)veca_(1) +(vecr.vecb)vecb_(1)+(vecr.vecc)vecc_(1)`

B

`vecr =(vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc`

C

`vecr=(vecr.veca_(1))veca +(vecr.vecb_(1))vecb + (vecr.veca_(1))vecc`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

veca,vecb and vecc are three non-coplanar vectors and r is any arbitrary vector. Prove that [[vecb, vecc,vec r]]veca + [[vecc, veca, vecr]]vecb +[[veca,vec b,vec r]]vecc = [[veca,vec b, vecc]]vecr

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+pveca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]-(veca\'xxvecb\')+(vecb\'xxvec\')+(vecc\'xxveca\')= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these