Home
Class 12
MATHS
Let veca,vecb,vecc be three non coplanar...

Let `veca,vecb,vecc` be three non coplanar and `vecd`be a vector which is perpendicular to `veca + vecb + vecc`. If `vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb` the-

A

xy + yz +zx=0

B

x=y=z

C

`x^(3) =y^(2) =z^(3) = 3xyz`

D

`x +y +z=0`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = alpha vecd and vecb + vecc + vecd = beta veca , then veca + vecb + vecc + vecd is equal to:

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca