Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors, th...

If `veca, vecb, vecc are unit vectors, then `|veca-vecb|^2+|vecb-vec|^2+|vecc^2-veca^2|^2` does not exceed (A) 4 (B) 9 (C) 8 (D) 6

A

4

B

9

C

8

D

6

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb,vecc are unit coplanar vectors than [2veca-vecb,2vecb-vecc, 2vecc-veca]= (A) 1 (B) 0 (C) -sqrt(3) (D) sqrt(3)

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

If veca. Vecb and vecc are unit vectors satisfying |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| is equal to