Home
Class 12
MATHS
' I ' is the incentre of triangle A B C ...

`' I '` is the incentre of triangle `A B C` whose corresponding sides are `a , b ,c ,` rspectively. `a vec I A+b vec I B+c vec I C` is always equal to a. ` vec0` b. `(a+b+c) vec B C` c. `( vec a+ vec b+ vec c) vec A C` d. `(a+b+c) vec A B`

A

`vec(AB) + vec(AB) + vec(CA)`

B

`a.vec(AB)+bvec(BC) +c(vecCA)`

C

`vec0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

'I' is the incentre of triangle ABC whose corresponding sides are a,b,c, rspectively.avec IA+bvec IB+cvec IC is always equal to a.vec 0 b.(a+b+c)vec BC c.(vec a+vec b+vec c)vec AC d.(a+b+c)vec AB

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a xxvec b = vec b xxvec c = vec c xxvec a then vec a + vec b + vec c =

If vec a xxvec b = vec b xxvec c = vec c xxvec a then vec a + vec b + vec c =

If vec a xxvec b = vec b xxvec c = vec c xxvec a then vec a + vec b + vec c =

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a, vec b, vec c are three vectors such that | vec b | = | vec c | then {(vec a + vec b) xx (vec a + vec c)} xx {(vec b xxvec c)} * (vec b + vec c) =

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]