Home
Class 12
MATHS
If veca and vecb are any two unit vector...

If `veca and vecb` are any two unit vectors, then find the greatest postive integer in the range of `(3|veca + vecb|)/2+2|veca-vecb|`

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

If veca and vecb are unit vectors, then find the greatest value of |veca+vecb|+ |veca-vecb| .

If veca and vecb are unit vectors, then the greatest value of |veca +vecb|+ |veca -vecb| is

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are unit vectors, then the greatest value of sqrt(3)|veca+ vecb|+|veca-vecb| is _________

If veca and vecb are unit vector and theta is the angle between then, then |(veca - vecb)/2| is: