Home
Class 12
MATHS
veca, vecb, vecc are non-zero unit vecto...

`veca, vecb, vecc` are non-zero unit vector inclined pairwise with the same angle `theta`. P,q,r are non-zero scalars satisfying `veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc`. Now, answer the following questions:
`q/2+2 cos theta` is equal to:

A

1

B

`2[veca vecb vecc]`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

veca, vecb, vecc are non-zero unit vector inclined pairwise with the same angle theta . P,q,r are non-zero scalars satisfying veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc . Now, answer the following questions: Volume of parallelogram with edges a,b and c is equal to:

Let veca, vecb and vecc be non - coplanar unit vectors, equally inclined to one another at an angle theta . If veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc , find scalars p, q and r in terms of theta .

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

Let veca, vecb and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi//3 . If veca xx vecb + vecb xx vecc =pveca + qvecb + rvecc , where p, q and r are scalars, then the value of (p^(2) + 2q^(2)+ r^(2))/q^(2) is:

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is as unit vector such that veca.vecb=veca.vecc=0 and theta= (pi/6) then veca= (A) +-1/2(vecbxxvecc) (B) +-(vecbxxvecc) (C) +-2(vecbxxvecc) (D) none of these

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta cos^-1(1/4) and vecc-2vecb=tvecas, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)