Home
Class 12
MATHS
If O is the circumcentre, G is the centr...

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: `vec(OA) +vec(OB)+vec(OC)=vec(OO')`

A

`vec(SA) + vec(SB) + vec(SC) =m 3vec(SG)`, where S is any point in the plane of `triangle ABC`.

B

`vec(OA) + vec(OB) +vec(OC) = vec(OO)`

C

`vec(O'A) + vec(O'B) + vec(O'C) = 2vec(O'O)`

D

`vec(AO') + vec(O'B) + vec(O'C) = vec(AP)`, where P is the diametrically opposite end to A.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

If D E and F be the mid ponts of the sides BC, CA and AB respectively of the /_\ABC and O be any point, then prove that vec(OA)+vec(OB)+vec(OC)=vec(OD)+vec(OE)+vec(OF)

If D is the mid-point of the side BC of a triangle ABC, prove that vec AB+vec AC=2vec AD .

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)