Home
Class 12
MATHS
In quadrilateral ABCD, vec(AB)=veca, vec...

In quadrilateral `ABCD, vec(AB)=veca, vec(BC)=vecb, vec(AD)=vecb-veca` If `M` is the mid point of `BC` and `N` is a point on `DM` such that `DN=4/5 DM`, then `vec(AN)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

In quadrilateral ABCD,vec AB=vec a,vec BC=vec b,vec AD=vec b-vec a If M is the mid point of BC and N is a point on DM such that DN=(4)/(5)DM, then vec AN=

If veca=m vecb+vec c , find the scalar m.

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

If vec A . vecB = vecA*vecB , find |vecA - vecB|

If D is the mid-point of the side BC of a triangle ABC, prove that vec AB+vec AC=2vec AD .

If vecA + vecB + vecC = vec0 , then vecA.(vecB xx vecC) = ……….

If D is the mid point of side BC of a triangle ABC such that vec AB+vec AC=lambdavec AD, write the value of lambda

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

Assertion: In a /_\ABC, vec(AB)+vec(BC)+vec(CA)=0 , Reason: If vec(AB)=veca,vec)BC)=vecb then vec(C)=veca+vecb (triangle law of addition) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.