Home
Class 12
MATHS
If veca, vecb, vecc are non-coplanar vec...

If `veca, vecb, vecc` are non-coplanar vectors, prove that the following vectors are coplanar.
(i) `3veca - vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc`
(ii) `5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5vecas+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 4veca+5vecb+vecc, -vecb-vecc, 5veca+9vecb+4vecc

Examine whather followig vectors are coplanar or nto: veca+vecb-vecc, veca-3vecb+vecc nd 2veca-vecb-vecc

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .