Home
Class 12
MATHS
Let vec r xx veca = vec b xx veca and ve...

Let `vec r xx veca = vec b xx veca` and `vecc vecr=0`, where `veca.vecc ne 0`, then `veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr)` is equal to __________.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vecA + vecB + vecC = vec0 , then vecA.(vecB xx vecC) = ……….

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to