Home
Class 12
MATHS
If veca, vecb, vecc, vecd are on a circl...

If `veca, vecb, vecc, vecd` are on a circle of radius R whose centre is a origin and `vecc - veca` is perpendicular to `vecd.vecb`, then `|vecd-veca|^(2) +|vecb-vecc|^(2) = kR^(2)` where k is equal to………………

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxecd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

Given vec(a) is perpendicular to vecb+vecc vecb , is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|