Home
Class 12
MATHS
If the vector vecb = 3hati + 4hatk is wr...

If the vector `vecb = 3hati + 4hatk` is written as the sum of a vector `vecb_(1)` parallel to `veca = hati + hatj` and a vector `vecb_(2)`, perpendicular to `veca` then `vecb_(1) xx vecb_(2)` is equal to:

A

`3hati - 3hatj + 9hatk`

B

`-3hati + 3hatj + 9hatk`

C

`-6hati + 6hatj -9/2 hatk`

D

`6hati - 6hatj + 9/2 hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the vector \(\vec{b} = 3\hat{i} + 4\hat{k}\) as the sum of two vectors: one vector \(\vec{b_1}\) that is parallel to \(\vec{a} = \hat{i} + \hat{j}\) and another vector \(\vec{b_2}\) that is perpendicular to \(\vec{a}\). We will then find the cross product \(\vec{b_1} \times \vec{b_2}\). ### Step-by-Step Solution: 1. **Identify the vectors:** - Given \(\vec{b} = 3\hat{i} + 4\hat{k}\) - Given \(\vec{a} = \hat{i} + \hat{j}\) 2. **Express \(\vec{b_1}\) in terms of \(\vec{a}\):** Since \(\vec{b_1}\) is parallel to \(\vec{a}\), we can express it as: \[ \vec{b_1} = \lambda \vec{a} = \lambda (\hat{i} + \hat{j}) = \lambda \hat{i} + \lambda \hat{j} \] where \(\lambda\) is a scalar. 3. **Express \(\vec{b_2}\):** Since \(\vec{b_2}\) is perpendicular to \(\vec{a}\), we have: \[ \vec{b_2} = \vec{b} - \vec{b_1} \] 4. **Set up the equation:** From the previous steps, we have: \[ \vec{b} = \vec{b_1} + \vec{b_2} \] Substituting \(\vec{b_1}\): \[ 3\hat{i} + 4\hat{k} = (\lambda \hat{i} + \lambda \hat{j}) + \vec{b_2} \] 5. **Dot product to find \(\lambda\):** Taking the dot product of \(\vec{b}\) with \(\vec{a}\): \[ \vec{b} \cdot \vec{a} = (3\hat{i} + 4\hat{k}) \cdot (\hat{i} + \hat{j}) = 3(1) + 4(0) = 3 \] On the other side: \[ \vec{b_1} \cdot \vec{a} = \lambda \vec{a} \cdot \vec{a} = \lambda (1 + 1) = 2\lambda \] Setting them equal gives: \[ 3 = 2\lambda \implies \lambda = \frac{3}{2} \] 6. **Find \(\vec{b_1}\):** Substitute \(\lambda\) back into the expression for \(\vec{b_1}\): \[ \vec{b_1} = \frac{3}{2}(\hat{i} + \hat{j}) = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} \] 7. **Find \(\vec{b_2}\):** Now substitute \(\vec{b_1}\) into the equation for \(\vec{b_2}\): \[ \vec{b_2} = (3\hat{i} + 4\hat{k}) - \left(\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}\right) \] Simplifying gives: \[ \vec{b_2} = \left(3 - \frac{3}{2}\right)\hat{i} - \frac{3}{2}\hat{j} + 4\hat{k} = \frac{3}{2}\hat{i} - \frac{3}{2}\hat{j} + 4\hat{k} \] 8. **Calculate \(\vec{b_1} \times \vec{b_2}\):** Now we can compute the cross product: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & \frac{3}{2} & 0 \\ \frac{3}{2} & -\frac{3}{2} & 4 \end{vmatrix} \] Expanding the determinant: \[ = \hat{i} \left(\frac{3}{2} \cdot 4 - 0 \cdot -\frac{3}{2}\right) - \hat{j} \left(\frac{3}{2} \cdot 4 - 0 \cdot \frac{3}{2}\right) + \hat{k} \left(\frac{3}{2} \cdot -\frac{3}{2} - \frac{3}{2} \cdot \frac{3}{2}\right) \] \[ = \hat{i} \cdot 6 - \hat{j} \cdot 6 + \hat{k} \cdot \left(-\frac{9}{4} - \frac{9}{4}\right) \] \[ = 6\hat{i} - 6\hat{j} - \frac{9}{2}\hat{k} \] ### Final Answer: \[ \vec{b_1} \times \vec{b_2} = 6\hat{i} - 6\hat{j} - \frac{9}{2}\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hatj+hatj+hatk and vecb=4hati-3hatj+hatk and veca=vec_(p)+veca_(q) then veca_(q) is equal to

If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hatj+hatj+hatk and vecb=4hati-3hatj+hatk then proj vecb(veca) is

Express the vector veca=(5hati-2hatj+5hatk) as sum of two vectors such that one is paralle to the vector vecb=(3hati+hatk) and the other is perpendicular to vecb .

vecA and vecB and vectors expressed as vecA = 2hati + hatj and vecB = hati - hatj Unit vector perpendicular to vecA and vecB is:

Let veca =hati + hatj + sqrt2 hatk, vecb = b_(1) hati + b _(2) hatj + sqrt2 hatk and vecc = 5 hati + hatj + sqrt2 hatk be three vectors such that the projection vector of vecb on veca is veca. If veca + vecb perpendicular to vecc, then |vecb| is equal to

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

Find the sum of the vectors veca = -2hati+hatj-4hatk and vecb = 3hati-hatj+5hatk .

If veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc is a unit vector perpendiculr to the vector veca and coplanar with veca and vecb , then a unit vector vecd perpendicular to both veca and vecc is

Given that vecA = 3hati + 4hatj +5hatk . Find vecB such that vecB.vecA= 38 and vecB xx A = - hati + 2 hatj - hatk .