If the vector `vecb = 3hati + 4hatk` is written as the sum of a vector `vecb_(1)` parallel to `veca = hati + hatj` and a vector `vecb_(2)`, perpendicular to `veca` then `vecb_(1) xx vecb_(2)` is equal to:
If the vector `vecb = 3hati + 4hatk` is written as the sum of a vector `vecb_(1)` parallel to `veca = hati + hatj` and a vector `vecb_(2)`, perpendicular to `veca` then `vecb_(1) xx vecb_(2)` is equal to:
A
`3hati - 3hatj + 9hatk`
B
`-3hati + 3hatj + 9hatk`
C
`-6hati + 6hatj -9/2 hatk`
D
`6hati - 6hatj + 9/2 hatk`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to express the vector \(\vec{b} = 3\hat{i} + 4\hat{k}\) as the sum of two vectors: one vector \(\vec{b_1}\) that is parallel to \(\vec{a} = \hat{i} + \hat{j}\) and another vector \(\vec{b_2}\) that is perpendicular to \(\vec{a}\). We will then find the cross product \(\vec{b_1} \times \vec{b_2}\).
### Step-by-Step Solution:
1. **Identify the vectors:**
- Given \(\vec{b} = 3\hat{i} + 4\hat{k}\)
- Given \(\vec{a} = \hat{i} + \hat{j}\)
2. **Express \(\vec{b_1}\) in terms of \(\vec{a}\):**
Since \(\vec{b_1}\) is parallel to \(\vec{a}\), we can express it as:
\[
\vec{b_1} = \lambda \vec{a} = \lambda (\hat{i} + \hat{j}) = \lambda \hat{i} + \lambda \hat{j}
\]
where \(\lambda\) is a scalar.
3. **Express \(\vec{b_2}\):**
Since \(\vec{b_2}\) is perpendicular to \(\vec{a}\), we have:
\[
\vec{b_2} = \vec{b} - \vec{b_1}
\]
4. **Set up the equation:**
From the previous steps, we have:
\[
\vec{b} = \vec{b_1} + \vec{b_2}
\]
Substituting \(\vec{b_1}\):
\[
3\hat{i} + 4\hat{k} = (\lambda \hat{i} + \lambda \hat{j}) + \vec{b_2}
\]
5. **Dot product to find \(\lambda\):**
Taking the dot product of \(\vec{b}\) with \(\vec{a}\):
\[
\vec{b} \cdot \vec{a} = (3\hat{i} + 4\hat{k}) \cdot (\hat{i} + \hat{j}) = 3(1) + 4(0) = 3
\]
On the other side:
\[
\vec{b_1} \cdot \vec{a} = \lambda \vec{a} \cdot \vec{a} = \lambda (1 + 1) = 2\lambda
\]
Setting them equal gives:
\[
3 = 2\lambda \implies \lambda = \frac{3}{2}
\]
6. **Find \(\vec{b_1}\):**
Substitute \(\lambda\) back into the expression for \(\vec{b_1}\):
\[
\vec{b_1} = \frac{3}{2}(\hat{i} + \hat{j}) = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}
\]
7. **Find \(\vec{b_2}\):**
Now substitute \(\vec{b_1}\) into the equation for \(\vec{b_2}\):
\[
\vec{b_2} = (3\hat{i} + 4\hat{k}) - \left(\frac{3}{2}\hat{i} + \frac{3}{2}\hat{j}\right)
\]
Simplifying gives:
\[
\vec{b_2} = \left(3 - \frac{3}{2}\right)\hat{i} - \frac{3}{2}\hat{j} + 4\hat{k} = \frac{3}{2}\hat{i} - \frac{3}{2}\hat{j} + 4\hat{k}
\]
8. **Calculate \(\vec{b_1} \times \vec{b_2}\):**
Now we can compute the cross product:
\[
\vec{b_1} \times \vec{b_2} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{3}{2} & \frac{3}{2} & 0 \\
\frac{3}{2} & -\frac{3}{2} & 4
\end{vmatrix}
\]
Expanding the determinant:
\[
= \hat{i} \left(\frac{3}{2} \cdot 4 - 0 \cdot -\frac{3}{2}\right) - \hat{j} \left(\frac{3}{2} \cdot 4 - 0 \cdot \frac{3}{2}\right) + \hat{k} \left(\frac{3}{2} \cdot -\frac{3}{2} - \frac{3}{2} \cdot \frac{3}{2}\right)
\]
\[
= \hat{i} \cdot 6 - \hat{j} \cdot 6 + \hat{k} \cdot \left(-\frac{9}{4} - \frac{9}{4}\right)
\]
\[
= 6\hat{i} - 6\hat{j} - \frac{9}{2}\hat{k}
\]
### Final Answer:
\[
\vec{b_1} \times \vec{b_2} = 6\hat{i} - 6\hat{j} - \frac{9}{2}\hat{k}
\]
Similar Questions
Explore conceptually related problems
If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hatj+hatj+hatk and vecb=4hati-3hatj+hatk and veca=vec_(p)+veca_(q) then veca_(q) is equal to
If vecb ne 0 , then every vector veca can be written in a unique manner as the sum of a vector veca_(p) parallel to vecb and a vector veca_(q) perpendicular to vecb . If veca is parallel to vecb then veca_(q) =0 and veca_(q)=veca . The vector veca_(p) is called the projection of veca on vecb and is denoted by proj vecb(veca) . Since proj vecb(veca) is parallel to vecb , it is a scalar multiple of the vector in the direction of vecb i.e., proj vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|)) The scalar lambda is called the componennt of veca in the direction of vecb and is denoted by comp vecb(veca) . In fact proj vecb(veca)=(veca.vecUvecb)vecUvecb and comp vecb(veca)=veca.vecUvecb . If veca=-2hatj+hatj+hatk and vecb=4hati-3hatj+hatk then proj vecb(veca) is
Express the vector veca=(5hati-2hatj+5hatk) as sum of two vectors such that one is paralle to the vector vecb=(3hati+hatk) and the other is perpendicular to vecb .
vecA and vecB and vectors expressed as vecA = 2hati + hatj and vecB = hati - hatj Unit vector perpendicular to vecA and vecB is:
Let veca =hati + hatj + sqrt2 hatk, vecb = b_(1) hati + b _(2) hatj + sqrt2 hatk and vecc = 5 hati + hatj + sqrt2 hatk be three vectors such that the projection vector of vecb on veca is veca. If veca + vecb perpendicular to vecc, then |vecb| is equal to
If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:
Find the sum of the vectors veca = -2hati+hatj-4hatk and vecb = 3hati-hatj+5hatk .
If veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc is a unit vector perpendiculr to the vector veca and coplanar with veca and vecb , then a unit vector vecd perpendicular to both veca and vecc is
Given that vecA = 3hati + 4hatj +5hatk . Find vecB such that vecB.vecA= 38 and vecB xx A = - hati + 2 hatj - hatk .
Recommended Questions
- If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...
Text Solution
|
- if veca , vecb and vecc are three non-zero, non- coplanar vectors and ...
Text Solution
|
- The base vectors veca(1), veca(2) and veca(3) are given in terms of ba...
Text Solution
|
- सदिश vecB = 3hatj + 4hatk को सदिशों vec B(1) (vecA = hati + hatj...
Text Solution
|
- veca,vecb, vecc are non-coplanar vectors and veca(1),vecb(2),vecc(2) c...
Text Solution
|
- If the vector vecb = 3hati + 4hatk is written as the sum of a vector v...
Text Solution
|
- If vecB(1),vecB(2) and vecB(3) are the magnetic field due to l(1),l(2)...
Text Solution
|
- निम्नलिखित सरल रेखाओं के समीकरणों पर विचार कीजिए: L(1): vecr =(hati+...
Text Solution
|
- If veca, vecb, vecc are three non-zero, non-coplanar vectors and vec...
Text Solution
|