Home
Class 12
MATHS
If vecu, vecv, vecw are non -coplanar v...

If `vecu, vecv, vecw` are non -coplanar vectors and `p,q,` are real numbers then the equality
`[3vecu p vecv p vecw]-[p vecv vecw qvecu]-[2vecw-qvecv qvecu]=0` holds for

A

exactly two values of (p,q)

B

more than two but not all values of (p,q)

C

all values of (p,q)

D

exactly one value of (p,q)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu, vercv, vecw be three noncoplanar unit vectors and alpha,beta, gamma the angles between vecu and vecv, vecv and vecw,vecw and vecu respectively, vecx, vecy , vecz unit vector along the bisectors of the angles alpha, beta, gamma respectively. Prove that: [vecx xx vecy vecy xx vecz vecz xx vecx]=1/16[vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals

If vecu, vecv, and vecw are three non-caplanar vectors, then prove that (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)=vecu.vecvxxvecw

If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-vecw).(vecu-vecc)xx(vecv-vecw) equals (A) vecu.vecvxxvecw (B) vecu.vecwxxvecv (C) 3vecu.vecuxxvecw (D) 0