Home
Class 12
MATHS
If the vectors veca,vecb,vecc form the s...

If the vectors `veca,vecb,vecc` form the sides BC,CA and AB respectively of a triangle ABC then (A) `veca.(vecbxxvecc)=vec0` (B) `vecaxx(vecbxvecc)=vec0` (C) `veca.vecb=vecc=vecc=veca.a!=0` (D) `vecaxxvecb+vecbxxvecc+veccxxvecavec0`

A

`veca.vecb=vecb.vecc=vecc.vecb=0`

B

`veca xx vecb = vecb xx vecc = vecc xx veca`

C

`veca.vecb=vecb.vecc=vecc.veca=0`

D

`veca xx veca + veca xx vecc =veca xx veca =0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If 4veca+5vecb+9vecc=vec0 then (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca)} is equal to

If veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc and veca!=vec0, then prove that vecb=vecc.

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]