Home
Class 12
MATHS
If vecu, vecv, vecw are three non-coplan...

If `vecu, vecv, vecw` are three non-coplanar vectors, the `(vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)` equals

A

0

B

`vecu.vecv xx vecw`

C

`vecu.vecw xx vecv`

D

`3vecu.vecv xx vecw`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-vecw).(vecu-vecc)xx(vecv-vecw) equals (A) vecu.vecvxxvecw (B) vecu.vecwxxvecv (C) 3vecu.vecuxxvecw (D) 0

If vecu, vecv, and vecw are three non-caplanar vectors, then prove that (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)=vecu.vecvxxvecw

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

Let veca, vecb, vecc be any three vectors.Then vectors vecu=vecaxx(vecbxxvecc), vecv=vecbxx(veccxxveca) and vecw=veccxx(vecaxxvecb) are such that they are

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbers then the equality [3vecu p vecv p vecw]-[p vecv vecw qvecu]-[2vecw-qvecv qvecu]=0 holds for

If vecu, vercv, vecw be three noncoplanar unit vectors and alpha,beta, gamma the angles between vecu and vecv, vecv and vecw,vecw and vecu respectively, vecx, vecy , vecz unit vector along the bisectors of the angles alpha, beta, gamma respectively. Prove that: [vecx xx vecy vecy xx vecz vecz xx vecx]=1/16[vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2