Home
Class 12
MATHS
Let veca = 2hati+(lambda)1hatj+3hatk , v...

Let `veca = 2hati+(lambda)_1hatj+3hatk` , `vec(b)=4hati+(3-(labda)_2)hatj+6hatk` and `vec(c)=3hati+6hatj+((lambda)_3-1)hatk` be three vectors such that `vec(b)=2 vec(a)` and `vec(a)` is perpendicular to `vec(c)` then a possible value of `((lambda)_1,(lambda)_2,(lambda)_3)` is: (a) `(1,3,1)` (b) `((-1/2),4,0)` (c) `(1,5,1)` (d) `((1/2), 4, -2)`

A

(1,3,1)

B

(1,5,1)

C

`(-1/2,4,0)`

D

`(1/2,4,-2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

vec a=2hat i+lambda_(1)hat j+3hat k,vec b=4hat i+(3-lambda_(2))hat j+6hat k and vec c=3hat i+6hat j+(lambda_(3)-1)hat k be three vectors such that vec b=2vec a and vec a is perpendicular to c then a possible value of (lambda_(1),lambda_(2),lambda_(3)) is : (a) (1,3,1)( b) (-(1)/(2),4,0)( c) (1,5,1) (d) ((1)/(2),4,-2)

Let vec a = hati + lamda_1 hatj + hatk , vec b = 2 hati + ( 1 - lamda_2) hatj + 2 hatk " and" vec c = hati + hatj + (lamda_3 - 2) hatk be the vectors such that vecb = 2veca and veca is perpendicular to vec c . Then a possible value of (lamda_1 , lamda_2 , lamda_3) is :

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

Let vec(a)=2hati-hatj+hatk,vec(b)=hati+2hatj-hatk and vec( c )=hati+hatj-2hatk be three vectors. A vector in the plane of vec(b) and vec( c ) whose projection on vec(a) is of magnitude sqrt(2//3) is

If vec(A) = hati + 3hatj + 2hatk and vec(B) = 3hati + hatj + 2hatk , then find the vector product vec(A) xx vec(B) .

If veca = 3hati - hatj - 4hatk , vecb = -2hati + 4hatj - 3hatk and vec c = hati + 2hatj - hatk then |3veca - 2vec b + 4vec c | is equal to

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

Find the value of lambda so that the vectors vec(A) = 2hati + lambda hatj +hatk and vec(B) = 4hati - 2hatj - 2hatk are perpendicular to each other.

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is