Home
Class 12
MATHS
Let O be the origin , and vec(OX),vec(OY...

Let O be the origin , and `vec(OX),vec(OY),vec(OZ) ` be three unit vector in the directions of the sides ` vec(OR) , vec(RP) , vec(PQ) ` respectively, of a triangle PQR, Then , ` |vec(OX) xx vec(OY)|` =

A

sin (P+R)

B

sin 2R

C

sin (Q+R)

D

sin (P+Q)

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vector in the directions of the sides vec(QR) , vec(RP),vec(PQ) respectively , of a triangle PQR. |vec(OX)xxvec(OY)|=

Find the unit vector in the direction of the vector vec a + vec b if vec a =vec i +2 vec j + 3 vec k and vec b = 2 vec i + 3 vec j + 5 vec k .

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

If vec(a) and vec(b) are unit vectors, then what is the value of |vec(a) xx vec(b)|^(2) + (vec(a).vec(b))^(2) ?

The unit vector bisecting vec(OY) and vec(OZ) is

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let vec a, vec b, vec c be three non-zero vectors such that [vec with bvec c] = | vec a || vec b || vec c | then

Let vec(a) and vec(b) be two unit vectors and theta is the angle between them. Then vec(a)+vec(b) is a unit vector if :

Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) represent the sides of a regular hexagon. Statement I: vec(PQ) xx (vec(RS) + vec(ST)) ne vec0 Statement II: vec(PQ) xx vec(RS) = vec0 and vec(PQ) xx vec(RS) = vec0 and vec(PQ) xx vec(ST) ne vec0 For the following question, choose the correct answer from the codes (A), (B) , (C) and (D) defined as follows: