Home
Class 12
MATHS
A, B C and D are four points in a plane ...

A, B C and D are four points in a plane with position vectors, `veca, vecb vecc and vecd` respectively, such that `(veca-vecd).(vecb-vecc)= (vecb-vecd).(vecc-veca)=0` then point D is the ______ of triangle ABC.

Text Solution

Verified by Experts

The correct Answer is:
Orthocentre
Promotional Banner

Similar Questions

Explore conceptually related problems

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.