Home
Class 12
MATHS
If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1...

If `|(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0` and vectors `(1,a,a^2),(1,b,b^2) and (1,c,c^2)` are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1

|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]|=0 prove that abc= I

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=