Home
Class 12
MATHS
If veca, vecb and vecc are unit vectors ...

If `veca, vecb and vecc` are unit vectors satisfying `|veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc|` is

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca. Vecb and vecc are unit vectors satisfying |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| is equal to

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If |veca|=|vecb|=|vecc|=1 and |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 then |2veca+5vecb+5vecc|=?

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

Let veca , vecb and vecc be three unit vectors such that |veca - vecb|^2 + |veca - vecc|^2 =8 . Then |veca + 2vecb|^2 + |veca + 2vecc|^2 is equal to ________.

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.