Home
Class 12
MATHS
Let vecA, vecB and vecC be unit vectors ...

Let `vecA, vecB and vecC` be unit vectors such that `vecA.vecB = vecA.vecC=0` and the angle between `vecB and vecC " be" pi//3`. Then `vecA = +- 2(vecB xx vecC) `.

Text Solution

Verified by Experts

The correct Answer is:
true
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca.vecc . If the angle between vecb and vecc " is " pi/6 , " then " veca equals

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

If veca, vecb, vecc are unit vectors such that veca. Vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

vecA, vecB and vecC are vectors such that vecC= vecA + vecB and vecC bot vecA and also C= A . Angle between vecA and vecB is :

Let veca, vecb, vecc be three unit vectors such that veca. vecb=veca.vecc=0 , If the angle between vecb and vecc is (pi)/3 then the volume of the parallelopiped whose three coterminous edges are veca, vecb, vecc is

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: