Home
Class 12
MATHS
for any three vectors, veca, vecb and ve...

for any three vectors, `veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc`.

Text Solution

Verified by Experts

The correct Answer is:
false
Promotional Banner

Similar Questions

Explore conceptually related problems

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb and vecc write value of the following veca xx (vecb + vecc) + vecb xx (vecc + veca)+ vecc xx (veca + vecb)

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

If vecb and vecc are any two orthogonal unit vectors and veca is any vector, then (veca.vecb)vecb + (veca.vecc)vecc + (veca.(vecb xx vecc))/|vecb xx vecc|^(2) (vecb xx vecc) =

Then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecb))xx (vecb xx vecc)) (vecb -vecc) is always equal to

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If two out to the three vectors , veca, vecb , vecc are unit vectors such that veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0 then the length of the third vector is