Home
Class 12
MATHS
Find 3-dimensional vectors vecv(1),vecv(...

Find 3-dimensional vectors `vecv_(1),vecv_(2),vecc_(3)` satisfying `vecv_(1).vecv_(2)=4,vecv_(1).vecv_(2) =-2, vecv_(1).vecv_(3)=6`
`vecv_(2).vecv_(2)=2, vecv_(2).vecv_(3) = -5, vecv_(3).vecv_(3)=29`

Text Solution

Verified by Experts

The correct Answer is:
`vecv_(1) =2hati, vecv_(2)=-hati + hatj` and `vecv_(3) =3hati - 2hatj +- 4hatk`
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vecV_(1)+vecV_(2)|=|vecV_(1)-vecV_(2)| and V_(2) is finite, then

For any two vectors vecu and vecv , prove that (i) |vecu.vecv|^(2) + |vecu xx vecv|^(2) = |vecu|^(2)|vecv|^(2) and (ii) (1+|vecu|^(2))(1+|v|^(2)) =|1-vecv+(vecu xx vecv)|^(2)

If |vecV_1+vecV_2|=|vecV_1+vecV_2| and V_2 is finite, then

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(1-vecu.vecc)^2+|vecu+vecv+vecuxxvec|^2

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

If in a triagle ABC, vec(AB)=(vecu)/(|vecu|)-(vecv)/(|vecv|) and vecAC=2(vecu)/(|vecu|) ,where |vecu|=|vecv| , then