Home
Class 12
MATHS
For any two vectors vecu and vecv, prove...

For any two vectors `vecu` and `vecv`, prove that
(i) `|vecu.vecv|^(2) + |vecu xx vecv|^(2) = |vecu|^(2)|vecv|^(2)` and
(ii) `(1+|vecu|^(2))(1+|v|^(2)) =|1-vecv+(vecu xx vecv)|^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(1-vecu.vecc)^2+|vecu+vecv+vecuxxvec|^2

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

If |vecV_(1)+vecV_(2)|=|vecV_(1)-vecV_(2)| and V_(2) is finite, then

If in a triagle ABC, vec(AB)=(vecu)/(|vecu|)-(vecv)/(|vecv|) and vecAC=2(vecu)/(|vecu|) ,where |vecu|=|vecv| , then

If vecu, vecv, and vecw are three non-caplanar vectors, then prove that (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)=vecu.vecvxxvecw

If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (2vecu)/|vecu| , " where " |vecu| ne |vecv| , then

If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (2vecu)/|vecu| , " where " |vecu| ne |vecv| , then