Home
Class 12
MATHS
If vectors, vecb, vcec and vecd are not ...

If vectors, `vecb, vcec and vecd` are not coplanar, the pove that vector `(veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) ` is parallel to `veca`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=2[vecb vecc vecd] veca

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca,vecb,vecd,vecd be vectors such that [vecavecbvecc]=2 and (vecaxxvecb) xx (vecc xx vecd)+(vecb xx vecc) xx (vecc xx vecd) + (vecc xx veca) xx (vecb xx vecd)=-muvecd Then the value of mu is

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca