Home
Class 12
MATHS
The equation of the plane contaiing the ...

The equation of the plane contaiing the lines `vecr=veca_(1)+lamda vecb` and `vecr=veca_(2)+muvecb` is

A

`vecr ( vec a_(1)- vec a _(2)) xx vecb = [ veca _(1) veca_(2)vecb]`

B

`vecr . (veca _(2)-veca _(1)) [ veca _(1) veca _(2) vecb ]`

C

`vecr. (veca _(1) - veca_(2)) xx vecb [veca _(2) veca_(1) vecb]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The lies vecr=veca_(1)+lamdavecb_(1) and vecr-veca_(2)+muvecb_(2) are coplanar if

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr vecas vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

The plane vecr cdot vecn = q will contain the line vecr = veca + lambda vecb if

The equation of the plane which contains the origin and the line of intersectio of the plane vecr.veca=d_(1) and vecr.vecb=d_(2) is

Let vecn be a unit vector perpendicular to the plane containing the point whose position vectors are veca, vecb and vecc and, if abs([(vecr -veca)(vecb-veca)vecn])=lambda abs(vecrxx(vecb-veca)-vecaxxvecb) then lambda is equal to

Lines vecr = veca_(1) + lambda vecb_(1) and vecr = veca_(2) + svecb_(2) will lie in a Plane if

The equation of the line throgh the point veca parallel to the plane vecr.vecn=q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Statement 1: If the vectors veca and vecc are non collinear, then the lines vecr=6veca-vecc+lamda(2vecc-veca) and vecr=veca-vecc+mu(veca+3vecc) are coplanar. Statement 2: There exists lamda and mu such that the two values of vecr in statement -1 become same