Home
Class 12
MATHS
Lines vecr = veca (1)+veca (2)and vecr =...

Lines `vecr = veca _(1)+veca _(2)and vecr = veca _(2)+ vecb _(2) `lie in a plane if :

A

`vecb _(1) xx vecb _(2)=0`

B

` (veca _(1) - veca_(1)) (vecb _(1) xx vecb _(2)) =0`

C

`veca _(1) xx veca _(2) =0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Lines vecr = veca_(1) + lambda vecb_(1) and vecr = veca_(2) + svecb_(2) will lie in a Plane if

The lies vecr=veca_(1)+lamdavecb_(1) and vecr-veca_(2)+muvecb_(2) are coplanar if

Lines vecr xx vecb = veca xx vecb and vecr xx veca = vecb xx veca , where veca =hati + hatj, vecb = 2hati -hatk intersect at

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr vecas vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

If veca = hati +hatj , vecb = 2hatj - hatk " and " vecr xx veca = vecb xx vec a , vecr xx vec b = veca xx vec b , then what is the value of (vec r)/(|vec r|)

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

Given three non-zero, non-coplanar vectors veca, vecb and vecc . vecr_1= pveca + qvecb+ vecc and vecr_2= veca + pvecb+ qvecc . If the vectors vecr_1 + 2vecr_2 and 2 vecr_1 + vecr_2 are collinear, then (p, q) is

The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca) intersect at a point where veclamda and mu are scalars then (A) veca,vecb,vecc are non coplanar (B) |veca|=|vecb|=|vecc| (C) veca.vecc=vecb.vecc (D) lamda(vecb xxvecc)+mu(vecc xxveca)=vecc