Home
Class 12
MATHS
In a tetrahedron OABC, if OA=hat(i), OB=...

In a tetrahedron OABC, if `OA=hat(i), OB=hat(i)+hat(j) and OC=hat(i)+2hat(j)+hat(k)`,if shortest distance between egdes OA and BC is m, then `sqrt(2)m` is equal to …(where O is the origin).

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between hat(i)+hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

[[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, hat(i)]]=

Angle between hat(i)-hat(j) and hat(j)-hat(k) is ____________.

If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(k) and c=ma+nb , then m+n is equal to

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :