Home
Class 12
MATHS
Let the vectors veca, vecb,vecc and vecd...

Let the vectors `veca, vecb,vecc and vecd` be such that `(vecaxxvecb)xx(veccxxvecd)=vec0`. Let `P_1 and P_2` be planes determined by pairs of vectors `veca,vecb and vecc,vecd respectively. Then the angle between `P_1 and P_2` is (A) 0 (B) `pi/4` (C) `pi/3` (D) `pi/2`

A

0

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If the vectors veca, vecb, vecc, vecd are any four vectors, then (vecaxxvecb).(veccxxvecd) is equal to

The non zero vectors veca,vecb, and vecc are related byi veca=8vecb nd vecc=-7vecb. Then the angle between veca and vecc is (A) pi (B) 0 (C) pi/4 (D) pi/2

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

The non zero vectors veca,vecb and vecc are related by veca=(8) vecb and vecc=-7vecb. Then angle between veca and vecc is (A) pi/2 (B) pi (C) 0 (D) pi/4

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt(2) then the angle between vea and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|= and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is