Home
Class 12
MATHS
Statement If G(1),G(2),G(3) are the cent...

Statement If `G_(1),G_(2),G_(3)` are the centroids of the triangular faces `OBC, OCA, OAB` of a tetrahedron `OABC`, then the ratio of the volume of the tetrahedron to that of the parallelopiped with `OG_(1),OG_(2),OG_(3)` as coterminous edges is `9:4`.
Statement 2: For any three vctors,`veca, vecb,vecc`
`[(veca+vecb, vecb+vecc, vecc+veca)]=2[(veca, vecb, vecc)]`

Text Solution

Verified by Experts

The correct Answer is:
4518
Promotional Banner

Similar Questions

Explore conceptually related problems

Let G_(1),G_(2),G_(3) be the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC . If V_(1) denote the volume of the tetrahedron OABC and V_(2) that of the parallelopiped with OG_(1),OG_(2),OG_(3) as three concurrent edges, then

Prove that [veca+vecb, vecb+vecc ,vecc+veca]=2[veca vecb vecc]

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)