Home
Class 11
MATHS
Proved that 2sin^2(3pi)/4+2cos^2pi/4+2se...

Proved that `2sin^2``(3pi)/4``+2cos^2``pi/4``+2sec^2``pi/3=10`

Text Solution

AI Generated Solution

To prove that \( 2\sin^2\left(\frac{3\pi}{4}\right) + 2\cos^2\left(\frac{\pi}{4}\right) + 2\sec^2\left(\frac{\pi}{3}\right) = 10 \), we will evaluate each trigonometric function step by step. ### Step 1: Evaluate \( \sin\left(\frac{3\pi}{4}\right) \) Using the identity: \[ \sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: 2sin^(2)(3(pi)/(4))+2cos^(2)((pi)/(4))+2sec^(2)((pi)/(3))=10

Prove that: (a) 2sin^(2)(pi/2) + "cosec"^(2)((7pi)/2) cos^(2)(pi/3)=(3/2)^2 (b) 2sin^(2)((3pi)/4)+2cos^(2)(pi/4)+2sec^(2)(pi/3)=10

Prove that: 2sin^(2)(pi)/(6)+csc^(2)(7 pi)/(6)cos^(2)(pi)/(3)=(3)/(2)

" 1.Prove that : "sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

Prove that (a) sin^(2)(pi/6) + cos^(2)( pi/3) - tan^(2)(pi/4) = -1/2 (b) sin((8pi)/3) cos((23pi)/6) + cos((13pi)/3) sin((35pi)/6) = 1/2

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

Prove that: (sin^(2)pi)/(6)+(cos^(2)pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)

Evaluate the following: i) cos120^(@)sin390^(@)+cos330^(@)cos150^(@) ii) sin^(2)(3pi)/(4)+cos^(2)pi/4+sec^(2)pi/3

Prove that cos^(2)(pi/8-A/2)-cos^(2)(pi/8+A/2) [1-sin^(2)(pi/8-A/2)]-[1-sin^(2)(pi/8+A/2)] =sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2) =sin{(pi/8+A/2)+(pi/8-A/2)} sin{(pi/8+A/2)-(pi/8-A/2)} s=sinpi/4. sinA=1/sqrt(2)sinA =RHS Hence Proved.

Prove that 3"cos"^2 (pi)/(4)+sec^(2)(pi/3)+5 "tan"^(2)(pi)/(3)=(41)/(2) .