Home
Class 11
MATHS
If in a triangleA B C , (2cosA)/a+(cos B...

If in a triangle`A B C ,` `(2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a)` , then prove that the triangle is right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC,(2cos A)/(a)+(cos B)/(b)+(2cos C)/(b)=(a)/(bc)+(b)/(ca), then prove that the triangle is right angled.

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

In a triangle ABC If (2cos A)/(a)+(cos B)/(b)+(2cos C)/(c)=(a)/(bc)+(b)/(ca) find the angle A .

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In Delta ABC If: 2(cosA)/a + (cos B)/(b) + 2(cosC)/(c) = a/(bc) + b/(ca) , then: /_A =

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is