Home
Class 12
MATHS
[sin x+sin^(2)x=1],[cos^(12)x+3cos^(10)x...

[sin x+sin^(2)x=1],[cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

If sin^(2)x+sin x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1=

If sin x + sin^(2)x=1 then prove that cos^(12) x+3 cos^(10) x+ 3 cos^(8) x+ cos^(6) x=1 .

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

If sin x + sin ^(2)x =1, then the value of (cos ^(12) x+ 3 cos ^(10) x +3 cos ^(8) x+ cos ^(6)x) is-

If sin x+sin^(2)x+sin^(3)x=1 then cos^(6)x-4cos^(4)x+8 cos^(2)x=

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=