Home
Class 12
MATHS
" If "int(log(e)2)^(x)(1)/(sqrt(e^(x)-1)...

" If "int_(log_(e)2)^(x)(1)/(sqrt(e^(x)-1))dx=(pi)/(6)," then "x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(log 2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

If int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If int_(log2)^(x) (du)/((e^(u)-1)^(1/2)) = pi/6 , then e^(x) =