Home
Class 12
MATHS
The random variable X can the values 0, ...

The random variable `X` can the values 0, 1, 2, 3, Give P(X = 0) = P(X = 1)= p and P(X = 2) = P(X = 3) such that `sum p_i x_i^2=2sum p_i x_i` then find the value of `p`

Promotional Banner

Similar Questions

Explore conceptually related problems

The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X^(2)) = E(X) , find the value of p.

The random variable X can take only the values 0, 1, 2. Given that P(X=0) = P(X= 1) = p and E(X^2) = E(X) , then find the value of p

The random variable X can take only the values 0,1,2. If P(X=0)= P(X=1)=p and E(X^(2)) = E(X), then find the value of p.

The random variable X can take the values 0,1,2 only. Give that P(X=0)=P(X=1)=p and that E(X^2)=E(X) , find the value of p .

The random variable X can take only the values 0, 1,2 . Given that P(X=0) = P(X=1) = p and that E(X^2) = E(X) ; find the value of p .

A random variable X takes the values 0,1,2,3 and its mean = 1,3 .If P(X=3) =2P(X=1) and P(X=2) = 0.3 then P(X=0) is

The random variable X can take only the values 0,1,2. If P(X=0)=P(X=1)=p and E(X^(2))=E[X] , then find valu of p.

The random variable X can take only the values 0,1,2. If P(X=0)=P(X=1)=p and E(X^(2))=E[X] , then find valu of p.

The random variable X can take only the values 0;1;2. Giventhat P(X=0)=P(X=1)=p and that E(X^(2))=E(X); find the value of p.