Home
Class 10
MATHS
(1)(x)/(x-1)+(x-1)/(x)=4(1)/(4),x!=0,1...

(1)(x)/(x-1)+(x-1)/(x)=4(1)/(4),x!=0,1

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(x+1)+(2)/(x+2)=(4)/(x+4),x!=-1,x!=-2,x!=-4

If tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),x in(0,1), then (x^(4)+(1)/(x^(4))) is equal to

Solve for x in (4x-1)/(4x+1)+(4x+1)/(4x-1)=(10)/(3)

What is (8x)/(1-x^(4)) - (4x)/(x^(2) +1) +(x+1)/(x-1) - (x-1)/(x+1) equal to?

Solve the inequality,(1)/(x-1)-(4)/(x-2)+(4)/(x-3)-(1)/(x-4)<(1)/(30)

Solve the equation ((x-1)/(x+1))^4-13((x-1)/(x+1))^2+36=0

If f(x)={[(sin ax^(2))/(x^(2));x!=0(3)/(4)+(1)/(4a);x=0,quad is continuous everywhere,then a=1(b)a=-1a=(-1)/(4) (d) a=(1)/(4)

((x-1)(x+1)(x+4)(x+6))/(7x^2+8x+4)>0

((x-1)(x+1)(x+4)(x+6))/(7x^2+8x+4)>0