Home
Class 11
MATHS
(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2)...

(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=log(x+sqrt(x^(2)-a^(2)))

Find (dy)/(dx) , whne y = log(x+sqrt (x^2-a^2))

Find (dy)/(dx) if y = log (sqrt(2x + sqrt(4x^2 + a^2)))

If x-sqrt(a^(2)-y^(2))=a" log"(a-sqrt(a^(2)-y^(2)))/(y) , show that, (dy)/(dx)=(y)/(sqrt(a^(2)-y^(2)))

Find dy/dx , if : y= log((x+2)+sqrt(x^2+2))

Find dy/dx if y = log {2x + sqrt (4x^2 + a^2) } .

If y= log (x + sqrt(x^(2) + a^(2))) then (dy)/(dx) = ………

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y=xsqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2))) , then show that dy/dx=2sqrt(a^(2)+x^(2)) .

If tan^(-1) (y/x) = log sqrt(x^(2) + y^(2)) , prove that dy/dx = (x+y)/(x-y)