Home
Class 12
MATHS
The function f(x)=(lambdasinx+2cosx)/(si...

The function `f(x)=(lambdasinx+2cosx)/(sinx+cosx)` is increasing, if (a) `lambda<1` (b) `lambda>1` (c) `lambda<2` (d) `lambda>2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(lambdasinx+2cosx)/(sinx+cosx) is increasing, if (a) lambda 1 (c) lambda 2

The function f(x)=(lambdasinx+2cosx)/(sinx+cosx) is increasing, if (a) lambda 1 (c) lambda 2

The function f(x)=sinx+cosx will be

The function f(x)=Tan^(-1) (sinx+cosx) is an increasing function in

The function f(x) =tan^(-1)(sinx+cosx) is an increasing function in

The function f(x)=(sinx)/(sinx-cosx) is discontinuous at -

If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is increasing for all values of x then

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in :

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in