Home
Class 12
MATHS
y^(2)=ax^(2)+2bx+cy^(3)=(dy^(2))/(dx^(2)...

y^(2)=ax^(2)+2bx+cy^(3)=(dy^(2))/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

if y^(2)=ax^(2)+2bx+c then y^(3)(d^(2)y)/(dx^(2))

y^(2) = ax^(2) +bx + c then y^(3) (d^(2)y)/(dx^(2)) is a …….. function

"If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

If xy^(2)= ax^(2) +bxy + y^(2) then (dy)/(dx) =

If y^2 =ax^2 + bx +c , then y^3(d^2y)/(dx^2) is

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

(a+bx)e^((y)/(x))=x, Prove that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y^(2)=ax^(2)+2bx+c," then "(ax+b)^(3)(d^(2)x)/(dy^(2))=

If (a+bx)e^((y)/(x))=x , show that, x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2) .

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0