Home
Class 11
MATHS
In any triangle. if(a^2-b^2)/(a^2+b^2)=(...

In any triangle. `if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B))` , then prove that the triangle is either right angled or isosceles.

Text Solution

Verified by Experts

`(a^(2) - b^(2))/(a^(2) + b^(2)) = (sin (A - B))/(sin (A + B))`
or `(4R^(2) sin^(2) A - 4R^(2) sin^(2) B)/(4R^(2) sin^(2) A + 4R^(2) sin^(2) B) = (sin (A - B))/(sin (A + B))` (Using Sine Rule)
or `(sin (A + B) sin (A- B))/(sin^(2) A + sin^(2)B) = (sin(A - B))/(sin(A + B))`
`rArr sin(A - B) = 0 " or " (sin (pi C))/(sin^(2) A + sin^(2) B) = (1)/(sin (pi - C))`
or `A = B " or " sin^(2) C = sin^(2) A + sin^(2) B`
or `A = B " or " c^(2) = a^(2) + b^(2)` [from the sine rule]
Therefore, the triangle is isosceles or right angled
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a hat harr ABC,(a^(2)-b^(2))/(a^(2)+b^(2))=(sin(A-B))/(sin(A+B)), prove that it is either a right angled or an isosceles triangle.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

If in a DeltaABC, (a^(2)-b^(2))/(a ^(2)+b^(2))=(sin (A-B))/(sin (A+B)), then the triangle is

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If in a triangle ABC,(2cos A)/(a)+(cos B)/(b)+(2cos C)/(b)=(a)/(bc)+(b)/(ca), then prove that the triangle is right angled.

In the triangle ABC, if (a^(2)+b^(2)) sin (A-B)=(a^(2) -b^(2)) sin (A+B), then the triangle is

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

In Delta ABC,(b^(2)+c^(2))/(b^(2)-c^(2))=(sin(B+C))/(sin(B-C)) then the triangle is

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.