Home
Class 10
MATHS
" 47."7(x-2y)^(2)-25(x-2y)+12...

" 47."7(x-2y)^(2)-25(x-2y)+12

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize the following expressions 7(x-2y)^2-25(x-2y)-12

Factorize : 7(x-2y)^2 - 25 (x-2y)+12

Factorise: 25(x+y)^(2)- 36 (x-2y)^(2).

The lines 2x-3y=5 and 3x-4y=7 are the diameters of a circle of area 154 sq. units. Then the equation of the circle is a. x^(2)+y^(2)+2x-2y-62=0 b. x^(2)+y^(2)+2x-2y-47=0 c. x^(2)+y^(2)-2x+2y-62=0 d. x^(2)+y^(2)-2x+2y-47=0

The lines 2x-3y=5 and 3x-4y=7 are the diameters of a circle of area 154 sq.units. Then the equation of the circle is x^(2)+y^(2)+2x-2y=62x^(2)+y^(2)+2x-2y=47x^(2)+y^(2)-2x-2y=47x^(2)+y^(2)-2x+2y=62

If a parabola is represented by 25(x^(2)+y^(2))=(4x-3y-12)^(2), then

Factor (x + y) ^ (2) -7 (x ^ (2) -y ^ (2)) + 12 (xy) ^ (2)

{:("Column" A ,, "Column" B), (225x^(2) - 625 y^(2) = ,, (a) 25(x-2) (x-2)), (x^(2) - x - y - y^(2) = ,, (b) 25(3x- 5y) (3x + 5y)), (x^(2) - x - y^(2) + y = ,, (x + y) (x - y- 1)), (25x^(2) - 100 x + 100 = ,, (d) (x - y) (x + y -1)), (,,(e) (x + y) (x + y - 1)):}

The length of the latusretum of the parabola 169|(x-1)^(2)+(y-3)^(2)|=(5x-12y+7)^(2) , is

The lines 2x-3y=5 and 3x-4y=7 are the diameters of a circle of area 154 sq. units. Then the equation of the circle is (a) x^2+y^2+2x-2y=62 (b) x^2+y^2+2x-2y=47 (c) x^2+y^2-2x+2y=47 (d) x^2+y^2-2x+2y=62