Home
Class 12
MATHS
int x sin^(-1)x+sin^(-1)y=cos^(-1){sqrt(...

int x sin^(-1)x+sin^(-1)y=cos^(-1){sqrt((1-x^(2))(1-y^(2)))-xy}

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+sin^(-1)y=cos^(-1)(sqrt(1-x^(2))sqrt(1-y^(2))-xy) if x in[0,1],y in[0,1]

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0 A) sin^(-1)x-cos^(-1)y=c B) sin^(-1)x-sin^(-1)y=c C) log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c D) x-y=c(1+xy)

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Prove that sin ^ (- 1) x + cos ^ (- 1) y = (tan ^ (- 1) (xy + sqrt ((1-x ^ (2)) (1-y ^ (2)))) ) / (y sqrt (1-x ^ (2)) - x sqrt (1-y ^ (2)))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz