Home
Class 11
MATHS
The least positive solution of cot(pi/(...

The least positive solution of `cot(pi/(3sqrt3) sin2x)=sqrt3` lie (a) `sin(0,pi/6)` (b) `(pi/9,pi/6)` (c) `(pi/12,pi/9)` (d) `(pi/3,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The least positive solution of cot (pi/(3 sqrt(3)) sin 2x)=sqrt(3) lies in

sin(pi-6x)+sqrt3 sin(pi/2+6x)=sqrt3

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

sin^(-1)((-1)/2) (a) pi/3 (b) -pi/3 (c) pi/6 (d) -pi/6

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

The range of f(x)=sin^(-1)(sqrt(x^(2)+x+1)) is (0,(pi)/(2))(b)(0,(pi)/(3))(c)((pi)/(3),(pi)/(2)) (d) [(pi)/(6),(pi)/(3)]

Over [-pi,pi] the solution of 2sin^(2)(x+(pi)/(4))+sqrt(3)cos2x>=0 is

The sum of all the solutions of cot theta=sin2 theta(theta!=n pi,n integer) 0<=theta<=pi, is (a) (3 pi)/(2) (b) pi (c) 3(pi)/(4) (d) 2 pi

For f(x)=sin^2x ,x in (0,pi) point of inflection is: pi/6 (b) (2pi)/4 (c) (3pi)/4 (d) (4pi)/3