Home
Class 14
MATHS
(3^(x+4)-6xx3^(x+1))/3^(x+2)=...

`(3^(x+4)-6xx3^(x+1))/3^(x+2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

9^(x+2)-6xx3^(x+1)+1=0

If for x in R, (1)/(3) lt (x^(2) - 2x + 4)/(x^(2) + 2x + 4) lt 3 , then (9.3^(2x) + 6.3^(x) + 4)/(9.3^(2x) - 6.3^(x) + 4) lies between

((x^(5y-3)xx x^(3-2y))/(x^(4y-6)xx x^(2y-9)))^(-4/3)= ______

int(3x^(13)-+2x^(11))/((4x^(4)+3x^(2)+1)^(4))dx is equal to (A)(x^(12))/((4x^(4)+3x^(2)+1)^(4))+C(B)(2)/(3(4x^(4)+3x^(2)+1)^(3))+C(C)(x^(12))/(3(4x^(-4)+3x^(2)+1)^(4))(D)(x^(6))/(6(4x^(-4)+3x^(-2)+1)^(3))+C

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If 1(2)/(3)+ ( 2)/( 7 ) xx ( x)/( 7) = 1( 1)/( 4) xx ( 2)/( 3) +( 1)/( 6) then find the value of x.

Simplify: {(2/3)^2}^3x\ (1/3)^(-4)x\ 3^(-1)x\ 6^(-1)