Home
Class 12
MATHS
If A,B, C are the angles of a triangle A...

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A B C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cosC+i sinC) =

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

If in a triangle ABC , sin A =cos B , then the value of cos C is

In a / _ABC, (i) (a) / (cos A) = (b) / (cos B) (ii) 2sin A cos B = sin C