Home
Class 12
MATHS
If A B C are the angles of a triangle AB...

If A B C are the angles of a triangle ABC then `(cos A+i sin A)(cos B+i sin B)(cosC+i sinC) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)

if A, B and C are interior angles of a triangle ABC, then show that cos((B+C)/2) = sin (A/2)

If A,B and C are interior angles of a triangle ABC, then show that sin((B+C)/(2))=cos(A)/(2)

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

If in a triangle ABC , sin A =cos B , then the value of cos C is

In a triangle ABC,sin A-cos B=cos C then angle B is

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C